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 2 

1. Simulating recombining bacterial populations 3 

Multiple sequence alignments and their corresponding clonal frames were jointly 4 

simulated 1000 times under a neutral coalescent model with bacterial 5 

recombination and a Jukes-Cantor model of nucleotide substitution using 6 

SimMLST (1). Each population comprised 100 genome sequences of 1 million 7 

base pairs in length, which we partitioned into 1000 loci of equal length for 8 

computational efficiency. The population-scaled mutation rate, θ = 2Neu (where 9 

Ne is the effective population size and u the mutation rate per site per generation) 10 

was fixed to 1%, a typical value for many bacterial species (2) and the average 11 

recombination tract length to 500 base pairs, similar to estimates from several 12 

species (Fearnhead et al. 2005; Jolley et al. 2005; Kennemann et al. 2011; 13 

Everitt et al. 2014). The population-scaled recombination rate, ρ = 2Ner (where r 14 

is the rate of initiation of recombination per site per generation), was fixed to 0%, 15 

0.1% or 1%. At ρ = 1%, recombination events are initiated as often as mutation 16 

events, but the overall effect of recombination on the substitution process, known 17 

as r/m, is greater than that of mutation (r/m = 5) because each recombination 18 

event affects many sites. Therefore the range of recombination rates investigated 19 

encompasses those seen in the majority of bacteria, with the notable exception 20 

of extremely promiscuous species such as Helicobacter pylori, Streptococcus 21 

pneumoniae and Salmonella enterica (7). 22 

 23 
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Since recombination has been shown to produce spurious signals of exponential 24 

growth in phylogenies (8), we also studied the effect of recombination on branch 25 

accuracy in populations with different rates of growth. The growth rate parameter, 26 

g = Nem (where m is the exponential growth rate per generation), was 27 

investigated across a range of values of g = 0, 1 and 10, covering both low and 28 

high growth rates. Since exponential growth reduces the total number of 29 

substitutions across the tree, data simulated with the same value of θ under 30 

higher growth rates will comprise fewer substitutions. To make a fairer 31 

comparison we scaled θ in order to maintain the same expected number of 32 

mutations per tree across all demographic models. This was achieved by 33 

simulating the ratio of the average tree length constructed under a model of 34 

constant population size and one of exponential growth (g = 1 and g = 10). 35 

 36 

2. Phylogenetic tree construction 37 

Phylogenetic trees were constructed for each simulated dataset using the 38 

distance-based neighbor joining (NJ) and UPGMA methods, maximum likelihood 39 

(ML), and BEAST, which is a Bayesian inference method. In each analysis, a 40 

Jukes-Cantor (JC) model of nucleotide substitution was used (9). ML trees were 41 

constructed using PhyML with the following command line arguments: -m HKY85 42 

-v 0 -t 1 -f 0.25,0.25,0.25,0.25 -c 1 -s BEST -b 100 (10). Bayesian phylogenetic 43 

trees were constructed in BEAST v.1.7.5 (Bayesian Evolutionary Analysis by 44 

Sampling Trees), using a strict molecular clock (uniform prior) and exponential 45 

growth model (populations size fixed to 1.0) (XML available on request) (11, 12). 46 
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Since ML was shown to reconstruct the most accurate tree topology, this tree 47 

was used as a starting tree in each BEAST analysis. This required midpoint 48 

rooting of the tree and rescaling of terminal branches, such that tip heights were 49 

zero (a requirement of starting trees for exponential growth models in BEAST). 50 

Two independent Markov chain Monte Carlo (MCMC) chains were run for 10 51 

million steps each, which provided sufficient mixing and convergence to the 52 

stationary distribution. Parameters and trees from both runs were sampled every 53 

1000 steps and combined using LogCombiner. Model parameters were 54 

summarized using LogAnalyser. NJ and UPGMA trees were constructed using 55 

the APE and phangorn libraries in R respectively (13, 14). 56 

 57 

Bootstrapping of ML trees was performed in PhyML and of NJ and UPGMA trees 58 

in R, using 100 replicates in each case. Posterior probabilities of branches in 59 

BEAST trees were calculated by constructing the maximum clade credibility 60 

(MCC) tree for each distribution in TreeAnnotator (11, 12) . 61 

 62 

3. Calculating tree topology accuracy of estimated trees 63 

The accuracy of tree topology was calculated using the Robinson-Foulds 64 

Symmetric Difference metric (15) between the clonal frame and reconstructed 65 

tree. This was used to obtain the proportion of branches in the clonal frame 66 

correctly reconstructed in the estimated tree, i.e. accuracy = (total number of 67 

branches – (Symmetric Distance/2))/total number of branches. Unrooted trees 68 

were used for each comparison and the accuracy for each model was averaged 69 
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over 1000 simulated datasets. The accuracy of each posterior distribution of 70 

BEAST trees was quantified as the average accuracy across 1000 trees in the 71 

distribution, which did not differ from those estimated using the MCC tree. 72 

 73 

In order to investigate how accuracy of branches varied by branch length, each 74 

branch in a tree was assigned to one of three intervals based on its length. 75 

Intervals were defined so that the number of branches per interval was 76 

approximately equal (mean: 65.3). The average accuracy of branches within 77 

each interval is plotted in Figure S2. 78 

 79 

The accuracy of bootstrap values (ML, NJ, UPGMA) and posterior probabilities 80 

(BEAST) was measured as the mean proportion of correctly estimated branches 81 

within each of ten intervals of branch support value. 82 

 83 

4. Removal of homoplasious sites from sequence alignment 84 

Recombination events within a population can give rise to homoplasies across 85 

the phylogenetic tree. In order to remove all substitutions arising from 86 

recombination, all sites at which a homoplasy had occurred were removed from 87 

the alignment. Homoplasies were identified using maximum likelihood ancestral 88 

state reconstruction (16) to reconstruct the sequences at internal nodes in the ML 89 

tree and then counting the number of times each substitution arose on the tree. A 90 

homoplasious site is defined as one at which the minimum number of 91 

substitutions needed to explain the observed number of alleles is exceeded.  92 
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